201.11. CcdVisit table¶
201.11. CcdVisit table¶
Data Release: Data Preview 1
Container Size: large
LSST Science Pipelines version: r29.1.1
Last verified to run: 2025-06-21
Repository: github.com/lsst/tutorial-notebooks
Learning objective: To understand the contents of the CcdVisit
table and how to access it.
LSST data products: CcdVisit
Packages: lsst.rsp
, lsst.daf.butler
Credit: Originally developed by the Rubin Community Science team. Please consider acknowledging them if this notebook is used for the preparation of journal articles, software releases, or other notebooks.
Get Support: Everyone is encouraged to ask questions or raise issues in the Support Category of the Rubin Community Forum. Rubin staff will respond to all questions posted there.
1. Introduction¶
A CcdVisit
refers to an observation of the sky with an individual detector of the camera.
The CcdVisit
table contains data about the individual observations for every detector of a Visit
, such as the coordinates, date, time, filter, camera rotation, and exposure time.
It also contains image characterization data for the associated visit_image
(the processed, calibrated pixel data for one detector), such as the point-spread function (PSF) size, seeing, sky background, and zeropoint.
The contents of the CcdVisit
table are associated with the individual detectors of the camera (9 for LSSTComCam).
By contrast, the Visit
contains data associated with the boresight of the entire focal plane.
- TAP table name:
dp1.CcdVisit
- Butler table name:
visit_detector_table
- columns: 51
- rows: 16071
Related tutorials: The tutorial for the Visit
table is also in this series. The TAP and Butler data access services are demonstrated in the 100-level "How to" tutorials.
1.1. Import packages¶
Import standard python packages re
, numpy
, matplotlib
, and astropy
.
From the lsst
package, import modules for the TAP service and the Butler.
import re
import numpy as np
import matplotlib.pyplot as plt
from lsst.rsp import get_tap_service
from lsst.daf.butler import Butler
from lsst.utils.plotting import (get_multiband_plot_colors,
get_multiband_plot_symbols)
1.2. Define parameters and functions¶
Create an instance of the TAP service, and assert that it exists.
service = get_tap_service("tap")
assert service is not None
Create an instance of the Rubin data Butler, and assert that it exists.
butler = Butler('dp1', collections="LSSTComCam/DP1")
assert butler is not None
Define the colors and symbols to represent the LSST filters in plots.
filter_names = ['u', 'g', 'r', 'i', 'z', 'y']
filter_colors = get_multiband_plot_colors()
filter_symbols = get_multiband_plot_symbols()
2. Schema (columns)¶
To browse the table schema visit the Rubin schema browser, or use the TAP service via the Portal Aspect or as demonstrated in Section 2.1.
2.1. Retrieve table schema¶
To retrieve the table schema, define a query for the schema columns of the CcdVisit
table and run the query job.
query = "SELECT column_name, datatype, description, unit " \
"FROM tap_schema.columns " \
"WHERE table_name = 'dp1.CcdVisit'"
job = service.submit_job(query)
job.run()
job.wait(phases=['COMPLETED', 'ERROR'])
print('Job phase is', job.phase)
if job.phase == 'ERROR':
job.raise_if_error()
Job phase is COMPLETED
Retrieve the query results and display them as an astropy
table with the to_table()
attribute.
assert job.phase == 'COMPLETED'
results = job.fetch_result().to_table()
assert len(results) == 51
results
column_name | datatype | description | unit |
---|---|---|---|
str64 | str64 | str512 | str64 |
astromOffsetMean | double | Mean offset of astrometric calibration matches (arcsec) | arcsec |
astromOffsetStd | double | Standard deviation of offsets of astrometric calibration matches (arcsec) | arcsec |
band | char | Name of the band used to take the visit where this source was measured. Abstract filter that is not associated with a particular instrument. | |
ccdVisitId | long | Primary key (unique identifier). | |
darkTime | double | Average dark current accumulation time, accurate to 10ms. | s |
dec | double | Declination of Ccd center. | deg |
decl | double | Deprecated duplicate of dec. | deg |
detector | long | Detector ID. A detector associated with a particular instrument (not an observation of that detector). | |
effTime | double | Effective time metric | s |
effTimePsfSigmaScale | double | Effective time metric -- PSF size component | |
effTimeSkyBgScale | double | Effective time metric -- Sky background component | |
effTimeZeroPointScale | double | Effective time metric -- Throughput component | |
expMidpt | char | Midpoint time for exposure at the fiducial center of the focal plane array. TAI, accurate to 10ms. | |
expMidptMJD | double | Midpoint time for exposure at the fiducial center of the focal plane array in MJD. TAI, accurate to 10ms. | d |
expTime | double | Spatially-averaged duration of visit, accurate to 10ms. | s |
llcdec | double | Declination of lower left corner. | deg |
llcra | double | Right Ascension of lower left corner. | deg |
lrcdec | double | Declination of lower right corner. | deg |
lrcra | double | Right Ascension of lower right corner. | deg |
magLim | double | 5-sigma limiting magnitude | mag |
maxDistToNearestPsf | double | Maximum distance of an unmasked pixel to its nearest model psf star (pixel) | pixel |
nPsfStar | int | Number of stars used for PSF model | |
... | ... | ... | ... |
psfStarDeltaE1Median | double | Median E1 residual (starE1 - psfE1) for psf stars | |
psfStarDeltaE1Scatter | double | Scatter (via MAD) of E1 residual (starE1 - psfE1) for psf stars | |
psfStarDeltaE2Median | double | Median E2 residual (starE2 - psfE2) for psf stars | |
psfStarDeltaE2Scatter | double | Scatter (via MAD) of E2 residual (starE2 - psfE2) for psf stars | |
psfStarDeltaSizeMedian | double | Median size residual (starSize - psfSize) for psf stars (pixel) | pixel |
psfStarDeltaSizeScatter | double | Scatter (via MAD) of size residual (starSize - psfSize) for stars (pixel) | pixel |
psfStarScaledDeltaSizeScatter | double | Scatter (via MAD) of size residual scaled by median size squared | |
psfTraceRadiusDelta | double | Delta (max - min) of model psf trace radius values evaluated on a grid of unmasked pixels (pixel) | pixel |
ra | double | Right Ascension of Ccd center. | deg |
seeing | double | Mean measured FWHM of the PSF. | arcsec |
skyBg | float | Average sky background. | adu |
skyNoise | float | RMS noise of the sky background. | adu |
skyRotation | double | Sky rotation angle. | deg |
ulcdec | double | Declination of upper left corner. | deg |
ulcra | double | Right Ascension of upper left corner. | deg |
urcdec | double | Declination of upper right corner. | deg |
urcra | double | Right Ascension of upper right corner. | deg |
visitId | long | Reference to the corresponding entry in the Visit table. | |
xSize | long | Number of columns in the image. | pixel |
ySize | long | Number of rows in the image. | pixel |
zenithDistance | float | Zenith distance at observation mid-point. | deg |
zeroPoint | float | Zero-point for the Ccd, estimated at Ccd center. | mag |
The table displayed above has been truncated.
Option to print every column name as a list.
# for col in results['column_name']:
# print(col)
Option to use the regular expressions package re
to search for columns for which the description contains the string temp
.
# temp = 'time'
# temp = 'corner'
# temp = 'psf'
# for c, desc in enumerate(results['description']):
# if re.search(temp, desc):
# print(results['column_name'][c])
Delete the job, but not the results.
del query
job.delete()
2.2. Key columns¶
Descriptions for a few of the columns that are the most commonly used.
2.2.1. Visit Id and detector¶
Integers that uniquely identify the visit and detector (CCD) of the visit_image
.
visitId
detector
There is also a ccdVisitId
column but it is not used in any other table, and is not used to retrieve images.
The visitId
and detector
columns are important for joining tables and retrieving images from the butler.
2.2.2. Coordinates¶
The sky coordinates in decimal degrees of the center of the detector (CCD).
ra
dec
The RA, Dec of the four corners of the corresponding visit_image
are also available.
The column naming conventions are:
- "lower left corner" (
llcra
,llcdec
) - "lower right corner" (
lrcra
,lrcdec
) - "upper left corner" (
ulcra
,ulcdec
) - "upper right corner" (
urcra
,urcdec
)
2.2.3. Filter¶
The name of the filter that was used for the observation.
band
There is also the column physical_filter
which is unique to the physical filter (i.e., the coated glass plate). As of the DP1 release, there was only one glass filter per band ($ugrizy$).
2.2.4. Date and time¶
The date and time of the observation, as a Modified Julian Date (MJD).
expMidptMJD
Related columns include the start of the observation (obsStartMJD
) and the exposure time (expTime
).
2.2.5. Image characterization¶
Derived properties of the corresponding visit_image
.
magLim
, the 5-sigma limiting magnitude (depth)psfSigma
, radius of the PSF at the CCD centerseeing
, mean measured FWHM of the PSFskyBg
, average sky background (counts)zeroPoint
, magnitude of 1 count/second
2.3. Descriptions and units¶
For a subset of the key columns show the table of their descriptions and units.
col_list = set(['visitId', 'detector', 'ra', 'dec', 'band',
'expMidptMJD', 'magLim', 'psfSigma', 'seeing',
'skyBg', 'zeroPoint'])
tx = [i for i, item in enumerate(results['column_name']) if item in col_list]
results[tx]
column_name | datatype | description | unit |
---|---|---|---|
str64 | str64 | str512 | str64 |
band | char | Name of the band used to take the visit where this source was measured. Abstract filter that is not associated with a particular instrument. | |
dec | double | Declination of Ccd center. | deg |
detector | long | Detector ID. A detector associated with a particular instrument (not an observation of that detector). | |
expMidptMJD | double | Midpoint time for exposure at the fiducial center of the focal plane array in MJD. TAI, accurate to 10ms. | d |
magLim | double | 5-sigma limiting magnitude | mag |
psfSigma | float | PSF model second-moments determinant radius (center of chip) | pixel |
ra | double | Right Ascension of Ccd center. | deg |
seeing | double | Mean measured FWHM of the PSF. | arcsec |
skyBg | float | Average sky background. | adu |
visitId | long | Reference to the corresponding entry in the Visit table. | |
zeroPoint | float | Zero-point for the Ccd, estimated at Ccd center. | mag |
Clean up.
del col_list, tx, results
3. Data access¶
The CcdVisit
table is available via the TAP service and the butler.
Recommended access method: TAP.
3.1. TAP (Table Access Protocol)¶
The CcdVisit
table is stored in Qserv and accessible via the TAP services using ADQL queries.
3.1.2. Demo query¶
Avoid full-table queries.
Although the DP1 CcdVisit
table is relatively small, it is good practice to always include spatial constraints and only retrieve necessary columns.
Search for g- and r-band CCD visits within 3 degrees of the center of the Extended Chandra Deep Field South (ECDFS) field, RA, Dec = $53.13 -28.10$.
Return the visit identifiers, RA, Dec, band, the midpoint time of the exposure in MJD, and the seeing, sky background, and magnitude limit for the corresponding visit_image
.
query = "SELECT ccdVisitId, visitId, detector, " \
"ra, dec, band, expMidptMJD, " \
"seeing, skyBg, magLim " \
"FROM dp1.CcdVisit " \
"WHERE CONTAINS(POINT('ICRS', ra, dec), " \
"CIRCLE('ICRS', 53.13, -28.10, 3)) = 1 " \
"AND (band = 'r' OR band = 'g') " \
"ORDER BY expMidptMJD ASC "
job = service.submit_job(query)
job.run()
job.wait(phases=['COMPLETED', 'ERROR'])
print('Job phase is', job.phase)
if job.phase == 'ERROR':
job.raise_if_error()
Job phase is COMPLETED
Fetch the results as an astropy
table.
assert job.phase == 'COMPLETED'
results = job.fetch_result().to_table()
print(len(results))
4203
Option to display the table.
# results
As an example, plot the magnitude limit as a function of the seeing, and the sky background as a function of time.
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(7, 3))
ax2.axvline(60629, ls='dashed', color='grey')
ax2.axvline(60659, ls='dashed', color='grey')
ax2.text(60625.0, 12000, 'full')
ax2.text(60622.8, 11000, 'moon')
for filt in filter_names:
fx = np.where(results['band'] == filt)[0]
if len(fx) > 0:
ax1.plot(results['seeing'][fx], results['magLim'][fx],
filter_symbols[filt], ms=5, mew=0, alpha=0.4,
color=filter_colors[filt], label=filt)
ax2.plot(results['expMidptMJD'][fx], results['skyBg'][fx],
filter_symbols[filt], ms=5, mew=0, alpha=0.4,
color=filter_colors[filt], label=filt)
ax1.set_xlabel('seeing')
ax1.set_ylabel('magnitude limit')
ax2.set_xlabel('MJD')
ax2.set_ylabel('sky background')
ax2.legend(loc='upper center', handletextpad=0)
plt.tight_layout()
plt.show()
Figure 1: At left, the magnitude limit of the image declines as the seeing increases. At right, the sky background as a function of time over the LSSTComCam campaign.
Clean up.
job.delete()
del query, results
3.2.2. Joinable tables¶
The CcdVisit
table can be joined with
Visit
on column visit
.
Like the Visit
table, the CcdVisit
table can be joined with the Source
, ForcedSource
, DiaSource
, and ForcedSourceOnDiaObject
tables on column visit
.
No other TAP table has the ccdVisitId
column.
Visit¶
For example, start with the same query as in Section 3.1.2. Add the selection of column airmass
from the Visit
table, but otherwise keep the query constraints the same.
query = "SELECT cv.ccdVisitId, cv.visitId, cv.detector, " \
"cv.ra, cv.dec, cv.band, cv.expMidptMJD, " \
"cv.seeing, cv.skyBg, cv.magLim, v.airmass " \
"FROM dp1.CcdVisit AS cv " \
"JOIN dp1.Visit AS v ON cv.visitId = v.visit " \
"WHERE CONTAINS(POINT('ICRS', cv.ra, cv.dec), " \
"CIRCLE('ICRS', 53.13, -28.10, 3)) = 1 " \
"AND (cv.band = 'r' OR cv.band = 'g') " \
"ORDER BY cv.expMidptMJD ASC "
job = service.submit_job(query)
job.run()
job.wait(phases=['COMPLETED', 'ERROR'])
print('Job phase is', job.phase)
if job.phase == 'ERROR':
job.raise_if_error()
Job phase is COMPLETED
assert job.phase == 'COMPLETED'
results = job.fetch_result().to_table()
assert len(results) == 4203
print(len(results))
4203
For example, plot the airmass
from the Visit
table versus the seeing
and MJD of the observation from the CcdVisit
table and
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(7, 3))
for filt in filter_names:
fx = np.where(results['band'] == filt)[0]
if len(fx) > 0:
ax1.plot(results['airmass'][fx], results['seeing'][fx],
filter_symbols[filt], ms=5, mew=0, alpha=0.4,
color=filter_colors[filt], label=filt)
ax2.plot(results['expMidptMJD'][fx], results['airmass'][fx],
filter_symbols[filt], ms=5, mew=0, alpha=0.4,
color=filter_colors[filt], label=filt)
ax1.set_xlabel('airmass')
ax1.set_ylabel('seeing')
ax2.set_xlabel('MJD')
ax2.set_ylabel('airmass')
ax2.legend(loc='best', handletextpad=0)
plt.tight_layout()
plt.show()
Figure 2: At left, the seeing increases with the airmass of the observation, as expected. At right, the airmass of the observation over the LSSTComCam campaign.
3.2. Butler¶
The visit_detector_table
is only available in full from the Butler (no subsetting), but for DP1 it will fit in a large container.
Show that the only dimension for the visit_detector_table
is instrument
.
butler.get_dataset_type('visit_detector_table')
DatasetType('visit_detector_table', {instrument}, ArrowAstropy)
butler.get_dataset_type('visit_detector_table').dimensions.required
{instrument}
Show that there is only one dataset references for the "LSSTComCam" visit_detector_table
.
dataset_refs = butler.query_datasets("visit_detector_table", instrument="LSSTComCam")
print(len(dataset_refs))
print(dataset_refs[0])
1 visit_detector_table@{instrument: 'LSSTComCam'} [sc=ArrowAstropy] (run=LSSTComCam/runs/DRP/DP1/v29_0_0/DM-50260/20250416T185152Z id=420c9a41-907e-4e16-8a66-e318422c49be)
Retrieve the entire visit_detector_table
.
visit_detector_table = butler.get(dataset_refs[0])
Confirm that the visit_detector_table
has 16071 rows.
assert len(visit_detector_table) == 16071
print(len(visit_detector_table))
16071
Option to display the table (automatically truncated).
# visit_detector_table
Display the rows of the table for one visit.
tx = np.where(visit_detector_table['visitId'] == 2024110800245)[0]
visit_detector_table[tx]
detectorId | visitId | physical_filter | band | ra | dec | pixelScale | zenithDistance | expTime | zeroPoint | psfSigma | skyBg | skyNoise | astromOffsetMean | astromOffsetStd | nPsfStar | psfStarDeltaE1Median | psfStarDeltaE2Median | psfStarDeltaE1Scatter | psfStarDeltaE2Scatter | psfStarDeltaSizeMedian | psfStarDeltaSizeScatter | psfStarScaledDeltaSizeScatter | psfTraceRadiusDelta | psfApFluxDelta | psfApCorrSigmaScaledDelta | maxDistToNearestPsf | effTime | effTimePsfSigmaScale | effTimeSkyBgScale | effTimeZeroPointScale | magLim | decl | ccdVisitId | detector | seeing | skyRotation | expMidpt | expMidptMJD | obsStart | obsStartMJD | darkTime | xSize | ySize | llcra | llcdec | ulcra | ulcdec | urcra | urcdec | lrcra | lrcdec |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
deg | deg | arcsec / pix | deg | s | mag | pix | adu | adu | arcsec | arcsec | pix | pix | pix | pix | s | mag | deg | pix | pix | deg | deg | deg | deg | deg | deg | deg | deg | ||||||||||||||||||||||||
int64 | int64 | str32 | str32 | float64 | float64 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | int32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float64 | int64 | int64 | float64 | float64 | datetime64[ns] | float64 | datetime64[ns] | float64 | float64 | int32 | int32 | float64 | float64 | float64 | float64 | float64 | float64 | float64 | float64 |
0 | 2024110800245 | i_06 | i | 53.00453551947407 | -28.190330812465483 | 0.20034255 | 15.811996 | 30.0 | 31.838995 | 1.8325734 | 1425.881 | 40.684032 | 0.013188731 | 0.0075904555 | 77 | -0.0017561167 | -0.00053596497 | 0.014050585 | 0.012365655 | -0.0008765209 | 0.01351533 | 0.0073382757 | 0.27481803 | 0.12636535 | 0.021924777 | 794.26764 | 21.713379 | 0.6789396 | 1.1138377 | 0.95709074 | 24.19634 | -28.190330812465483 | 1145019888896 | 0 | 0.8645543744763075 | 102.799378733233 | 2024-11-09T06:12:16.184491000 | 60623.258520653835 | 2024-11-09T06:12:01.184491000 | 60623.25834704273 | 30.455 | 4071 | 3999 | 52.852308023843385 | -28.27574847408543 | 52.910473334596425 | -28.054937141362956 | 53.156342170329744 | -28.104861296054786 | 53.098772925780914 | -28.32570039342301 |
1 | 2024110800245 | i_06 | i | 53.064355266935024 | -27.961231391766976 | 0.2002798 | 15.809622 | 30.0 | 31.83873 | 1.7468716 | 1422.5039 | 37.339367 | 0.008955252 | 0.0046226964 | 88 | -0.0002264753 | 0.0003960058 | 0.012073228 | 0.009223385 | -0.00011816817 | 0.009787155 | 0.0055632405 | 0.12629928 | 0.12094698 | 0.01348997 | 628.4158 | 23.941256 | 0.7471915 | 1.116482 | 0.95662564 | 24.239191 | -27.961231391766976 | 1145019888897 | 1 | 0.8238645989113716 | 102.799378733233 | 2024-11-09T06:12:16.184491000 | 60623.258520653835 | 2024-11-09T06:12:01.184491000 | 60623.25834704273 | 30.455 | 4071 | 3999 | 52.91252384993021 | -28.046435296749927 | 52.97055212375497 | -27.82575210296401 | 53.21584226871104 | -27.875887370344532 | 53.15831205371236 | -28.09659857669357 |
2 | 2024110800245 | i_06 | i | 53.12390882343404 | -27.731683579156535 | 0.20034228 | 15.810765 | 30.0 | 31.836647 | 1.78905 | 1418.3729 | 39.185055 | 0.008094447 | 0.003990346 | 99 | 0.0013976768 | -0.0001938045 | 0.011579151 | 0.013788158 | -0.003783381 | 0.019315107 | 0.010649642 | 0.1963391 | 0.05447564 | 0.014677442 | 682.1465 | 22.80446 | 0.71237546 | 1.1197337 | 0.9529604 | 24.208672 | -27.731683579156535 | 1145019888898 | 2 | 0.8440201785550079 | 102.799378733233 | 2024-11-09T06:12:16.184491000 | 60623.258520653835 | 2024-11-09T06:12:01.184491000 | 60623.25834704273 | 30.455 | 4071 | 3999 | 52.972624972756044 | -27.81711398954253 | 53.02996447830659 | -27.59619947077631 | 53.27491006747064 | -27.646045239388027 | 53.21796965595435 | -27.86696622817951 |
3 | 2024110800245 | i_06 | i | 53.26469522335325 | -28.242507508599267 | 0.20027414 | 15.576916 | 30.0 | 31.837961 | 1.82284 | 1425.8518 | 39.428383 | 0.008271602 | 0.004680098 | 101 | 7.957034e-05 | -0.00013038516 | 0.009846868 | 0.009884624 | -0.0019776148 | 0.015945798 | 0.008746329 | 0.19495857 | 0.03981032 | 0.0026005514 | 654.0298 | 21.90459 | 0.6862097 | 1.1138605 | 0.9552703 | 24.180592 | -28.242507508599267 | 1145019888899 | 3 | 0.8596687858227765 | 102.799378733233 | 2024-11-09T06:12:16.184491000 | 60623.258520653835 | 2024-11-09T06:12:01.184491000 | 60623.25834704273 | 30.455 | 4071 | 3999 | 53.11283716752131 | -28.32820796624842 | 53.17024943547527 | -28.107341263035114 | 53.41625005158294 | -28.156717272507557 | 53.35939301000984 | -28.377704866033213 |
4 | 2024110800245 | i_06 | i | 53.32375176154874 | -28.013505219153245 | 0.200218 | 15.574672 | 30.0 | 31.83915 | 1.7138672 | 1424.3231 | 39.147896 | 0.0077907415 | 0.0045658858 | 97 | -9.317696e-05 | 0.00066259503 | 0.010088383 | 0.009745861 | 0.0014382002 | 0.012073453 | 0.0069978684 | 0.074722014 | 0.020994948 | 0.015410803 | 767.8301 | 24.859604 | 0.7762463 | 1.1150559 | 0.9573632 | 24.24863 | -28.013505219153245 | 1145019888900 | 4 | 0.8080495969829284 | 102.799378733233 | 2024-11-09T06:12:16.184491000 | 60623.258520653835 | 2024-11-09T06:12:01.184491000 | 60623.25834704273 | 30.455 | 4071 | 3999 | 53.172275203022274 | -28.09912010912059 | 53.22950309634053 | -27.878345097197474 | 53.47498276541747 | -27.927728783593288 | 53.41823206662435 | -28.148601948634692 |
5 | 2024110800245 | i_06 | i | 53.38273956426954 | -27.784217664042103 | 0.20027883 | 15.575785 | 30.0 | 31.838747 | 1.7853589 | 1414.5787 | 40.260956 | 0.0063703256 | 0.0036208716 | 84 | -0.0011746939 | -0.00051392615 | 0.0120537095 | 0.008244637 | -0.00039105458 | 0.0117064845 | 0.006516607 | 0.17354898 | 0.08796143 | 0.008903709 | 796.4788 | 23.049265 | 0.71532404 | 1.122737 | 0.95665413 | 24.217522 | -27.784217664042103 | 1145019888901 | 5 | 0.8420120736117171 | 102.799378733233 | 2024-11-09T06:12:16.184491000 | 60623.258520653835 | 2024-11-09T06:12:01.184491000 | 60623.25834704273 | 30.455 | 4071 | 3999 | 53.231612393760045 | -27.8698855517982 | 53.28863448276135 | -27.648983606061194 | 53.533682994869196 | -27.698319087365316 | 53.47705570153107 | -27.91930767141365 |
6 | 2024110800245 | i_06 | i | 53.5246792145985 | -28.294803370278277 | 0.20035267 | 15.342082 | 30.0 | 31.8388 | 1.8442194 | 1428.1514 | 39.904015 | 0.011732553 | 0.007160589 | 104 | -0.00047815964 | -0.0011714646 | 0.011638308 | 0.010554459 | -0.0015049732 | 0.015615952 | 0.008536858 | 0.22199431 | 0.05017352 | 0.014885595 | 743.4191 | 21.398252 | 0.67039186 | 1.112067 | 0.9567476 | 24.194454 | -28.294803370278277 | 1145019888902 | 6 | 0.8700925586378995 | 102.799378733233 | 2024-11-09T06:12:16.184491000 | 60623.258520653835 | 2024-11-09T06:12:01.184491000 | 60623.25834704273 | 30.455 | 4071 | 3999 | 53.372862299149226 | -28.380596416599765 | 53.42999505334116 | -28.159654348965617 | 53.67627838083212 | -28.20890081763317 | 53.61969271256924 | -28.430046476975857 |
7 | 2024110800245 | i_06 | i | 53.583628284352976 | -28.065367862820302 | 0.20027706 | 15.339507 | 30.0 | 31.840176 | 1.7520168 | 1415.0815 | 39.239273 | 0.0071751294 | 0.0044429163 | 101 | -0.0018707961 | -0.0017534588 | 0.010023365 | 0.012411433 | -0.00050531386 | 0.015835546 | 0.0089816665 | 0.15744267 | 0.073010385 | 0.01119243 | 700.81665 | 23.989433 | 0.7428094 | 1.1223382 | 0.95917445 | 24.22043 | -28.065367862820302 | 1145019888903 | 7 | 0.8262798830285275 | 102.799378733233 | 2024-11-09T06:12:16.184491000 | 60623.258520653835 | 2024-11-09T06:12:01.184491000 | 60623.25834704273 | 30.455 | 4071 | 3999 | 53.432247634750404 | -28.151230971057984 | 53.4890276591747 | -27.93036234996983 | 53.73485804226679 | -27.979322054849824 | 53.678536827791625 | -28.20035891531077 |
8 | 2024110800245 | i_06 | i | 53.64216871041843 | -27.83604930238401 | 0.20035034 | 15.340555 | 30.0 | 31.838373 | 1.8212446 | 1417.9701 | 40.677723 | 0.008442235 | 0.0040146704 | 70 | 0.00043812394 | -0.0025645457 | 0.00977064 | 0.0133948205 | -0.00044736837 | 0.011746131 | 0.0064166808 | 0.25612888 | 0.049838874 | 0.017017128 | 948.7077 | 22.081709 | 0.6874124 | 1.1200519 | 0.95599574 | 24.217436 | -27.83604930238401 | 1145019888904 | 8 | 0.8592431495439948 | 102.799378733233 | 2024-11-09T06:12:16.184491000 | 60623.258520653835 | 2024-11-09T06:12:01.184491000 | 60623.25834704273 | 30.455 | 4071 | 3999 | 53.49117723334687 | -27.922133426543837 | 53.54758409936598 | -27.701094439110708 | 53.79308825386978 | -27.749709860478767 | 53.737039100130495 | -27.97090847345148 |
3.2.1. Visit images¶
The CcdVisit
table's rows contain metadata for the corresponding visit_image
.
Option to retrieve the visit_image
for the first row of the table displayed above.
# visit = visit_detector_table[tx[0]]['visitId']
# detector = visit_detector_table[tx[0]]['detectorId']
# visit_image = butler.get('visit_image',
# visit = visit,
# detector = detector)
# del visit_image
Clean up.
del dataset_refs, visit_detector_table, tx